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Abstract
Progeroid syndromes are characterized by clinical signs of premature ageing, which may contain several 
diseases such as Werner syndrome, Bloom syndrome, Rothmund-Thomson syndrome, Hutchinson-Gilford 
progeria syndrome, and Cockayne syndrome. These disorders may also exhibit some pathological 
involvements reminiscent of primary mitochondrial diseases. Emerging evidence has linked mitochondria 
even to physiological ageing. In addition, alterations in the maintenance pathway of mitochondria have 
been also deliberated as relevant in age-related diseases. In particular, mitophagy and its regulatory 
pathway might be key process for the homeostasis of mitochondria. Therefore, chronic DNA damage and/or 
the activation of poly[adenosine diphosphate (ADP)-ribose] polymerase 1 (PARP1) could be a threat to the 
mitochondrial alterations. The PARP1 is an enzyme responding to the DNA damage, which might be also 
involved in the mitophagy. Interestingly, the PARP1 has been reported to play an important role in the 
longevity of lifespan, which has attracted growing attention with the social development. This review may 
provide a rationalized overview of the involvement of mitochondrial oxidative stresses in genetically 
defined accelerated ageing, progeroid syndromes, physiological ageing, and/or age-related diseases for the 
innovative therapeutic approaches.
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Introduction
The increasing proportion of elderly people in society characterizes an accumulative financial burden 
because of age-associated diseases and the significant associated cost of health and well-being maintenance 
[1]. There are broad-ranging suggestions on finding cost-effective interventions for age-associated diseases. 
Several genetically defined accelerated ageing disorders have been profoundly considered in the 
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comprehension of ageing. Interestingly, all these disorders are associated with some defects in the 
maintenance of genome. In other words, mutation in DNA repair genes may be involved in the pathogenesis 
of these genetically ageing disorders [2]. In addition, it is becoming gradually evident that direct or indirect 
DNA damage by highly reactive oxygen species (ROS) may play central roles in ageing [3]. In fact, the 
clinical symptoms of progeroid syndromes might be associated with the molecular features of ultraviolet 
radiation (UVR)-induced oxidative stresses [4]. Moreover, some of these disorders may show neurological 
involvements reminiscent of which are realized in several mitochondrial illnesses [5]. Mitochondria are the 
energy factories of the cells. Evolving evidence has connected this organelle to ageing and understanding 
mitochondrial dysfunction in accelerated ageing diseases [6]. Therefore, an accumulation of damage to 
mitochondria may trigger the process of accelerated ageing. Furthermore, nuclear DNA damage may lead to 
enlarged energy consumption, which may also direct to alterations in mitochondrial energy production [7, 
8]. Therefore, mitochondrial modifications could secondarily occur in the process of extra DNA repair after 
the excess DNA damage.

Mitochondria are an essential part of cells, which may have key roles in a group of metabolic processes 
including energy production and/or free radical generation. In addition, mitochondria have been 
considered as significant components in the process of ageing and cell death [9]. Exhausts of cellular energy 
reserves might lead to mitochondrial dysfunction and/or altered cellular metabolisms [10]. However, 
mitochondria are flexible organelles capable of varying their function under certain conditions caused by 
diverse elements of stressors, exercise, and/or diet [11]. In light damage, mitochondria could be repaired 
by the fusion with intact mitochondria. Otherwise, mitochondria might be segregated and transported to 
lysosomes for breakdown in the case of severe damage. This mitochondrial recycling is called mitophagy. 
Mitochondrial dynamics are thought to have important physiological roles in maintaining homeostasis [12]. 
Therefore, mitophagy has been recognized to be a key process for the homeostasis of mitochondria.

Several disorders characterized by chronic DNA damage and/or poly[adenosine diphosphate (ADP)-
ribose] (PAR) polymerase 1 (PARP1) activation may be at risk for mitochondrial alterations. Consequently, 
the PARP1 may be involved in the pathogenesis of these disorders with the alteration of mitophagy, which 
might respond to DNA damage [13]. As the PARP1 is a typical representative of the PARP enzyme family, it 
would be mentioned hereafter for the explanation of PARP function. The PARP1 could irreversibly cleave 
nicotinamide adenine dinucleotide (NAD+) generating nicotinamide and monomeric ADP-ribose. The ADP-
ribose unit could be poly-elongated in a process of poly(ADP-ribosyl)ation (PARylation), which might be 
involved in genome repair [14]. Interestingly, increased activation of PARP1 might be involved in the 
increased adenosine triphosphate (ATP) consumption in the situation of senescence [8]. The PARP1 has 
been reported to play an important role in longevity [15]. Upon activation of PARP1, some metabolites may 
inhibit pathways which are usually protective for cells. Then, PARP inhibitors have been suggested for 
alleviation of inflammation in chronic diseases. Therefore, the inhibition of PARP1 could reverse the 
phenotypes associated with accelerated ageing [15]. This implies that modulation of the PARP1 pathway 
might be therapeutic tactics for treating accelerated ageing diseases and/or disorders. In particular, NAD+ 
levels may have a deep impact on mitochondrial function and/or senescence. It could be speculated that 
NAD+ levels, PARP1 activation, mitochondrial dysfunction, neurodegenerative diseases, neuron senescence, 
and/or ageing may propagate a vicious cycle instead of guiding causal and resulting relationship.

PARP1 is involved in the pathogenesis of progeroid syndromes
Progeroid syndromes are a cluster of diseases characterized by indications of premature ageing, which may 
mimic in part physiological ageing [16]. These syndromes comprise several diseases such as Bloom 
syndrome, Werner syndrome, Hutchinson-Gilford progeria syndrome, Rothmund-Thomson syndrome, and 
Cockayne syndrome [16], which may exhibit some pathological involvements reminiscent of primary 
mitochondrial diseases (Figure 1). Mitochondrial illnesses are also a group of genetic diseases categorized 
by some defects in mitochondrial function [17]. In general, mitochondria are power plants of cells 
generating cellular energy ATP. Emerging evidence has linked this organelle to physiological ageing and 
found mitochondrial dysfunction in accelerated ageing disorders. An accumulation of damage to the 
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mitochondria may trigger the process of ageing. Nuclear DNA damage may lead to increased energy 
consumption, and therefore, the mitochondrial alterations may be secondary to faults in nuclear DNA 
repair and/or DNA damage [8, 18]. Alterations in mitochondrial ATP production may be caused by the 
activation of PARP1, an enzyme that responds to DNA damage [19]. Activated PARP1 utilizes key 
metabolites which may attenuate pathways for the protection of cells. Notably, pharmacological inhibition 
of PARP1 could reverse the phenotypes related to accelerated ageing [20]. PARP1 may be characterized as a 
multitasking protein that achieves some signaling functions in the situation of cellular stress response as 
well as senescence and aging [20]. This suggests that modulation of PARP1 function and/or the related 
signaling may become a key target of therapeutic tactics for treating accelerated ageing.

Figure 1. Schematic overview for the pathogenesis of progeroid syndromes such as Rothmund-Thomson syndrome, Werner 
syndrome, Bloom syndrome, Hutchinson-Gilford progeria syndrome, and Cockayne syndrome. The PARP1, PARPs, and/or 
NAD+ pools might contribute to the pathogenesis of several progeroid syndromes via the alteration of autophagy and/or 
mitophagy. Inflammation with several cytokines and/or ROS may be also involved in the modification of autophagy/mitophagy

Rothmund-Thomson syndrome

Rothmund-Thomson syndrome is a rare autosomal recessive disorder characterized by premature ageing 
including skin atrophy, hyperpigmentation, loss of hair, cataracts, and/or skeletal anomalies, which may be 
associated with increased susceptibility to various cancers. A subset of mutations in the RecQ like helicase 4 
gene (RECQL4) has been linked to two types of additional disorders [21]. Gene product of the RECQL4 
belongs to a family of DNA helicases that plays an important role in maintaining genomic stability [22]. 
RECQL4 could interact with PARP1, a nuclear enzyme that also promotes genomic integrity, through its 
involvement in DNA repair and/or their signaling pathways. The carboxy (C)-terminal region of RECQL4 
might be a substrate for PARP1, suggesting an interaction between RECQL4 and PARP1 in response to 
oxidative stresses [23] (Figures 1 and 2).

Werner syndrome

Werner syndrome is also a rare autosomal premature ageing disease connected with a predisposition to 
cancers and/or genomic instability, which might be initiated by some mutations in the gene encoding the 
WRN, a member of the RecQ family helicases with a potential role in sustaining genomic stability [24]. Loss 
of the function of a truncated WRN protein in Werner syndrome may result in high levels of early apoptosis 
exhibited by intensifications of cleaved caspases and/or PARP1. WRN might play an important role in the 
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Figure 2. Schematic representation of the modular organization of human PARP1 domains and subdomains. The N-terminal 
DNA-binding domain contains 3 Zn fingers, which are responsible for DNA binding and some protein-protein interactions. A NLS 
can be found in this DNA-binding domain. The automodification domain is a central regulating segment with a BRCT, which may 
serve protein-protein interactions. The C-terminal region accommodates the catalytic centre of PARP1. The WGR domain in the 
catalytic domain may be important for NAD+ binding. Several key molecules responsible for progeroid syndromes including 
RECQL4 (Rothmund-Thomson Syndrome), WRN (Werner syndrome), cytidine deaminase (Bloom syndrome), LMNA 
(Hutchinson-Gilford progeria syndrome), CSB (Cockayne syndrome), might be associated with the PARP1. N: amino; Zn: zinc; 
NLS: nuclear-localization signal; BRCT: BReast CAncer gene 1 C-terminal; WGR: tryptophan glycine and arginine rich; WRN: 
Werner syndrome protein; LMNA: lamin A/C; CSB: Cockayne syndrome protein B; CAT: catalase; SIRT1: sirtuin 1; BRCA: 
BReast CAncer gene; c-Abl: cellular Abelson tyrosine kinase; NF-κB: nuclear factor-kappa B

protection against DNA damage [25]. It has been shown that PARP1 could bind to the N-terminus of WRN 
and to the C-terminus encompassing the RecQ-conserved domain [26]. In addition, ADP-ribosylation of 
PARP1 could restore the activity of WRN exonuclease in the presence of NAD+ [26] (Figures 1 and 2).

Bloom syndrome

Bloom syndrome is also a rare genetic disease characterized by high levels of chromosomal instability and/
or a great increase in cancers risk. Cytidine deaminase expression might be downregulated in cells of Bloom 
syndrome, possibly leading to decreasing the PARP1 activity [27]. Decrease in the basal activity of PARP1 
may contribute to the incomplete sister chromatid disjunction [27, 28]. Therefore, it is possible that PARP1 
is involved in sister chromatid disjunction during mitosis [27, 28]. The genetic instability associated with 
the phenotype of Bloom syndrome may result from a defect of cytidine deaminase [29]. Cytidine deaminase 
is an enzyme of the pyrimidine salvage pathway, which could decrease the basal activity of PARP1 [30]. The 
decrease in the PARP1 activity might reduce the efficacy of downstream checkpoints, leading to the 
increase of unreplicated DNAs during mitosis (Figures 1 and 2).

Hutchinson-Gilford progeria syndrome

Hutchinson-Gilford progeria syndrome is a rare autosomal dominant disorder, which is also a fatal 
developmental disorder characterized by accelerated ageing including bone resorption and/or 
atherosclerosis [31]. Hutchinson-Gilford progeria syndrome may be caused by sporadic mutations in the 
LMNA gene, which might produce a mutant LMNA precursor of progerin [32]. Interestingly, the NAD+ 
salvage pathway has been altered in cells carrying the LMNA mutation, leading to altered PARP1-mediated 
PARylation [33]. In addition, LMNA could promote the PARP1 mono(ADP-ribosyl)ation in response to DNA 
damage [34] (Figures 1 and 2).

Cockayne syndrome

Cockayne syndrome is a rare autosomal recessive disease described as a segmental premature-aging 
syndrome. One of the foremost clinical hallmarks of Cockayne syndrome is neurological abnormalities. 
Mutations in CSB gene are present in the majority of Cockayne syndrome patients. The CSB might be an 
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ATP-dependent chromatin remodeler without helicase activity, which could discharge oxidative stresses by 
regulating DNA repair pathway. Significantly, the PARP1 could enhance the kinetics of chromatin 
association with the CSB. In addition, CSB could associate with PARP1 [35]. After the oxidative stresses, CSB 
and PARP1 could colocalize in the nucleoplasm. poly(ADP)ribosylated (PARylated) PARP1 might be 
prerequisite for retaining the CSB protein at sites of oxidative DNA damage to facilitate DNA repair [36, 37]. 
In general, unrepaired oxidative DNA damages have been recognized to increase cancer incidence and 
premature ageing phenotypes. The regulation of PARP1 by the CSB protein might be a key function in cells 
with oxidative stresses [38] (Figures 1 and 2).

Roles of PARP1 in physiological ageing
As PARP1 utilizes NAD+ as substrate, its extreme activation has an inclusive effect on the NAD+ metabolism 
in addition to the related intracellular signaling. In general, almost all members (17 members) in the PARPs 
family could modulate NAD+ metabolism, energy pathways, and/or oxidative metabolism. Reversible 
PARylation is a pleiotropic controller of several cellular functions [39]. However, uncontrolled PARPs 
activation may cause cell death. Therefore, noncovalent PARylation could be deliberated as a 
posttranslational modification of various factors to mitochondrial cell death. Utilizing the oxidized form of 
NAD+ as a substrate, PARPs could catalyze the covalent binding of ADP-ribose units onto aspartate, 
glutamate, lysine, serine, and tyrosine residues of various target proteins [40]. ADP-ribosylation might be a 
well-known posttranslational modification of various proteins with a noticeable regulation of many 
biological procedures including cellular responses to DNA damage. PARP1 has been defined as one of the 
fundamental DNA damage-responsive elements required for the preservation of genomic integrity. In 
response to several DNA damage affected by some genotoxic agents, PARP1 could promote a speedy 
production of PAR chains required for chromatin relaxation to organize the PAR-binding proteins, DNA 
repair proteins, and/or several transcription factors [41]. In fact, PARP1 is considerably involved in 
triggering DNA repair mechanisms [42].

Mammalian PARP1 consists of three domains such as DNA-binding domain, auto-modification domain, 
and catalytic domain in the C-terminus [43] (Figure 2). The auto-modification domain in the middle has a 
BRCA related region, which could promote the recruitment of DNA-repair enzymes. Termed with 
tryptophan, glycine, and arginine amino acid residues, the WGR domain in the catalytic domain might be 
important for NAD+ binding [44]. Moreover, c-Abl protein could interact with PARP1, which might be 
crucial for the expression of inflammatory genes [45]. Furthermore, the PARP1 could influence the 
expression of inflammatory cytokines including interleukin (IL)-1β and/or tumor necrosis factor (TNF)-α, 
thus stimulating inflammation [46]. Therefore, for example, excessive activation of PARP1 in microglia may 
contribute to several neuronal damage, which may be connected to the chronic neuro-inflammation [47]. 
Besides, acetylation of PARP1 plays an imperative role in several transcriptional regulations [48], which 
also supports inflammation via the regulation of NF-κB signaling [49]. Together, post-translational 
modification might be significant in the regulation of PARP1 activity. It has been shown that PARP1 could 
protect neurons from neuronal cell death under mild oxidative stresses as a result of successful DNA repair 
[50]. When severe DNA damage occurs, PARP1 may be excessively activated, leading to exhaustion of NAD+ 
and ATP, and eventually to cell death [51]. SIRT1, which is a NAD+-dependent protein deacetylase, and 
plays indispensable roles in metabolic control, may be repressed after PARP1 activation. Actually, PARP1 
may cooperate with SIRT1 in conditions such as mitochondrial metabolism, DNA damage repair, and/or 
inflammation [52]. During the course of physiological ageing, SIRT1 activity might be decreased, leading to 
increased acetylation of PARP1 as well as raised activity of NF-κB [53]. By the same token, it has been 
demonstrated that PARP1 decreases with cumulative level of progerin in cultured progeria cells [54]. 
Remarkably, inhibition of PARP1 can improve mitochondrial function through activating the SIRT1 [55]. In 
addition, PARP1 could contribute to the preservation of blood-brain barrier (BBB) [56] and/or several 
circadian rhythms in brain [57], which might be linked to the pathogenesis of several neurodegenerative 
diseases [58]. Accordingly, PARP1 could participate in a diversity of intracellular processes to influence 
cellular function and/or inflammatory conditions.
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The interaction between PARP1 and adenosine monophosphate-activated protein kinase alpha 
(AMPKα) has been defined for DNA damage dependent activation of PARP1, while PARP1 might be a target 
of AMPKα [59]. In addition, an anti-inflammatory crosstalk connecting AMPK to PARP1 activity has been 
revealed [59]. Consequently, full AMPK activity might be required for PARP1 activation during nutrient 
deprivation [60]. In PARP1-deficient cells, a decreased production of ROS has been shown even at early 
time point after starvation [60]. A nuclear quantity of α isoform of AMPK has been defined to be able to 
interact with PARP1 [15]. Deficiency of effective PARylation might keep the stability of the PARP1/AMPKα 
complex in PARP1-inactivated cells. Accordingly, the AMPKα could not be transported from the nucleus to 
the cytosol during the starvation. In consequence, an inefficient activation of the cytosolic AMPKα may 
incompletely maintain the activity of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) 
compromising the activation of unc-51 like autophagy activating kinase 1 (ULK1) with the initiation of 
phagophores [60]. Therefore, the mutual interaction between PARP1 and AMPKα may direct to the 
optimization of autophagy initiation as a complicated molecular switch via the modification of AMPKα by 
PARPs [61]. During nutrient deprivation, ROS distributed from mitochondria could induce DNA damage, 
then PARP1 might make out this DNA damage to encourage DNA repair. In case PARP1 is extremely 
activated, the cellular condition might consume NAD+ and/or ATP as substrates for synthesizing PAR in 
cells [62]. As a result, the PARylation of AMPKα by the AMPKα/PARP1 complex might be a key factor in 
beginning autophagy. Similarly, active AMPKα could activate the autophagy via the inhibition of the 
mTORC1 complex [63], which might be involved in physiological ageing [36, 37, 55] (Figure 3).

Figure 3. Several modulator molecules linked to the PI3K/AKT/AMPK/mTOR/mTORC1 signaling pathway for autophagy/
mitophagy and/or anti-ageing are demonstrated. Example compounds known to act on the AMPK/mTOR pathway and/or 
autophagy/mitophagy are also shown on the right side. Arrowhead means stimulation whereas hammerhead represents 
inhibition. Note that some critical events such as antioxidants feedback pathway have been omitted for clarity. PI3K: 
phosphoinositide-3 kinase; Gs: G protein stimulatory subunit; AC: adenylate cyclase; PTEN: phosphatase and tensin 
homologue deleted on chromosome 10; PDK1: phosphoinositide-dependent kinase-1; PKA: protein kinase A; AKT: protein 
kinase B; MAPK: mitogen-activated protein kinase; mTOR: mammalian/mechanistic target of rapamycin; SCFAs: short chain 
fatty acids; S6: ribosomal protein S6; S6K: S6 kinase; Nrf2: nuclear factor erythroid 2-related factor 2
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The connection between PARP1 and autophagy/mitophagy
Mitochondria are like energy plants in a cell. In addition, mitochondria are the main metabolic hubs, which 
are also involved in signaling pathways for health and/or disease conditions through alterations in these 
metabolites. Most ROS might be produced in mitochondria, which could work both as signaling and/or 
detrimental molecules [64]. The resultant oxidative stresses may be also existing in physiological processes 
for ageing, where they could lead to genomic instability with potential onset of various pathologies. Hence, 
autophagy/mitophagy might be mandatory in the maintenance of genomic integrity as well as healthy 
homeostasis [65]. A basal autophagy/mitophagy impairment may lead to inefficient cellular responses to 
oxidative stresses and increased susceptibility of cells, which could increase cellular vulnerability to 
external and/or internal stresses [66]. Autophagy/mitophagy might be also mandatory for blocking and/or 
delaying cell death as well as ageing. As a prosurvival mechanism, autophagy could be encouraged by 
different types of cellular stresses including DNA damage, ROS, nutrient deprivation, and/or hypoxia, 
promoting adaptation of cells to the harmful environment [67]. PARP1 might be involved in the regulation 
of autophagy/mitophagy with PARylation of autophagy/mitophagy-related proteins, where the SIRT1 could 
be a key regulator of autophagy/mitophagy [68]. Remarkably, several PARPs and PARylation could also 
modify the function of mitochondria from the nucleus through depletion of NAD+ molecules and/or 
epigenetic regulation of nuclear genes [69]. Activated PARP1, for example, could regulate some pathological 
pathways including mitophagy and/or mitochondrial dysfunction [68].

Mitophagy is an intracellular process through which damaged mitochondria are removed [70]. 
Mitophagy is a kind of autophagy. Under excess oxidative conditions, massive DNA damage might be 
recognized by PARP1, triggering the initiation of mitophagy. Again, impaired regulation of autophagy/
mitophagy could cause cellular functional decline and/or cell death, bringing about several human diseases 
[71]. Therefore, autophagy/mitophagy pathways might play crucial roles in keeping the cellular 
homeostasis [60, 71]. Activated PARP1 may be also accompanied by PARylation-induced depolarization of 
mitochondrial membrane [72]. In fact, PARP1 could localize to mitochondria, where it poly(ADP)ribosylates 
(PARylates) electron transport chain proteins [73]. Similar to nuclear PARP1, surplus activation of 
mitochondrial PARP1 could impede the biogenesis of mitochondria, leading to cell death, which is 
mitochondria-related apoptosis [74]. DNA damage-dependent mitochondria signaling may be due to the 
accumulation of PAR [75]. Active PARP1 could synthesize the PAR polymer from NAD+ to mark the site of 
DNA damage [75]. PARylation is a reversible protein modification carried out by the concerted actions of 
PARPs and PAR, which could disrupt the mitochondrial energy mechanisms linking the release of 
mitochondrial proapoptotic factors [76]. It has been shown that PARP1 might play a key role in autophagy/
mitophagy by inhibiting SIRT1 [77]. Notably, the SIRT1 might be repressed by the activation of PARP1 [78]. 
Furthermore, NAD+ precursors could rescue the mitochondrial defects and extend lifespan [78], which may 
suggest a potential therapeutic strategy for several progeroid disorders [78]. As for a key role in longevity, 
SIRT1 might be involved in autophagy/mitophagy in physiological and/or pathological ageing. 
Interestingly, it has been revealed that PARP1-induced defective mitophagy may be also a key mechanism 
in peripheral neuropathic injuries [79].

The involvement of impaired mitophagy, NAD+ depletion, and accumulation of damaged mitochondria 
have been suggested in the metabolic dysfunction of Werner syndrome [80]. Interestingly, renovation of 
the mitophagy could improve the disease phenotypes of Werner syndrome in both Drosophila melanogaster 
and Caenorhabditis elegans models as well as in primary cells isolated from patients of Werner syndrome, 
suggesting that an impairment of the NAD+-mitophagy axis might play a critical role in the development of 
Werner syndrome [80]. The Bloom syndrome DNA helicase (BLM) is a recombination factor in maintaining 
genome stability, and BLM-deficient cells may also exhibit increased mitochondrial mass, higher ATP levels, 
and/or increased respiratory spare capacity [81]. In Cockayne syndrome, cells may exhibit mitochondrial 
fragmentation and/or excessive fission, which could be rescued by considerably stimulating mitophagy via 
the overexpression of Parkin [82]. RECQL4 is associated with Rothmund-Thomson syndrome, which could 
be found in mitochondria [83]. The loss of RECQL4 could also alter the mitochondrial integrity in cells with 
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Rothmund-Thomson syndrome [83]. Remarkably, accumulated evidence indicates that RECQL4 is 
important not only in cancer development but also in the accelerated ageing process [84]. A basal activation 
of mitophagy in cells of Hutchinson-Gilford progeria syndrome has been also shown [85]. Interestingly, all 
of the markers of mitophagy could be reversed in response to the treatment of Hutchinson-Gilford progeria 
syndrome cells with the specific inhibitor of chromosomal region maintenance 1 (CRM1) [85]. Consistently, 
the increase of defective mitochondria caused by impaired mitophagy has been also observed in the 
progeroid syndromes Xeroderma pigmentosum and/or Cockayne [78, 86]. In general, PARP proteins are 
usually involved in the modification of proteins and/or nucleic acids through mono(ADP-ribosyl)ation or 
PARylation, which may decrease the activity of AMPK and/or mitochondrial turnover. Lastly in this section, 
therefore, comprehension of mitochondrial profiles of PARylation, mono(ADP-ribosyl)ation, and the details 
of AMPK function in the mitochondrial dynamics should be explored in future studies of progeroid 
disorders.

Plausible molecular essence of ageing
Ageing refers to the phenomenon that the physical and psychological adaptability of the body to the 
environment gradually declines. The increasing proportion of ageing people represents a swelling 
economic burden, because of age-associated various diseases. Finding potential interventions to age-
associated conditions might have widespread implications. A number of genetically defined accelerated 
ageing diseases have been characterized, which seem to be associated with defects in the maintenance of 
genomic integrity. As shown here, a key factor that might connect the association between several 
progeroid disorders and natural ageing may be simultaneously the function of PARPs, oxidative stresses, 
and/or mitochondrial function. In particular, PARP1 and mitophagy might be important. Emerging 
evidence has linked mitochondria to physiological ageing and found mitochondrial dysfunction in 
accelerated ageing disorders [6, 87], which may indicate that an accumulation of damage to the 
mitochondria could partly underlie the process of ageing. The mitochondrial alterations may be caused by 
activation of PARP1, which implies that modulation of PARP1 could potentially become a target of 
therapeutic strategy for treating accelerated ageing disorders and/or age-associated diseases.

Excessive activation of PARP1 may accelerate ageing in mice model [88]. In line with this finding, 
PARP1 inhibitor could improve the function of senescent cells by increasing NAD+ levels and/or SIRT1 
activity [89]. Actually, NAD+ supplementation in the treatment with nicotinamide riboside or nicotinamide 
mononucleotide, both of which are NAD+ precursors, has significantly protective effect against the process 
of ageing [90], as similarly does SIRT1 [91]. Interestingly, it has been shown that both p53 and PARP1 
might be responsible for the telomere-shortening [92]. The p53 could control cell cycle, cell apoptosis, and/
or senescence instigated by the telomere-shortening [93]. In the telomere-related ageing, PARP1 might be 
also crucial for the p53 activity [94]. Besides, PARP1 could also prevent for the abnormal telomere 
shortening as well as the physiological shortening [95]. Therefore, PARP1 inhibition could occasionally 
induce telomere lengthening [96]. PARP1 may be a pleiotropic molecule in the regulation of ageing. On one 
hand, PARP1 could protect cells from senescence. On the other hand, PARP1 could also promote cell death 
in senescent conditions. Increased activity of PARP1 may help to extend lifespan [97]. Importantly, PARP1 
has a substantial role in DNA damage-repair, and thereby might contribute to the extension of lifespan in 
animal models. PARP1 is abundantly expressed in the primary cell cultures derived from long-lived rat 
species [98]. Consequently, these cells might possess high efficiency in DNA repair ability. Taken together, 
PARP1 might be a kind of longevity-guarantee factor. It is possible that PARP activity may correlate with 
maximum lifespan.

Ageing is a natural process, characterized by progressive loss of biological integrity, impaired function, 
and increased susceptibility to death. This natural and physiological ageing may be associated with 
excessive ROS production and/or resulting DNA damage [99]. In this meaning, several antioxidants may 
have more or less anti-ageing effects. Up to the present, however, studies have focused on the role of 
mitochondrial dysfunction in ageing and/or ageing-related degenerative diseases, suggesting that restoring 



Explor Med. 2023;4:822–38 | https://doi.org/10.37349/emed.2023.00180 Page 830

mitochondrial biogenesis may exert favourable effects in extending lifespan and/or supporting healthy 
ageing [100]. Moreover, decreasing levels of autophagy and/or NAD+ have been suggested as further 
features of ageing or age-related disease [101]. It has been revealed that enhancing autophagy/mitophagy 
and/or intracellular NAD+ pools could endorse the extension of lifespan [102]. The NAD+ replacement has 
been shown to alleviate cellular function by enhancing autophagy/mitophagy [103]. Clearance of impaired 
mitochondria via the mitophagy has been demonstrated to be linked to the longevity [104]. Conversely, 
impairment of autophagy/mitophagy has been revealed to trigger NAD+ reduction following apoptotic cell 
death [105]. In other words, both autophagy/mitophagy and NAD+ pools mutually depend on each other for 
ideal cellular function and/or longevity [106]. Elimination of impaired mitochondria by selective 
autophagy/mitophagy might be a longevity relevant key process throughout ageing.

Conclusions
Longevity of lifespan has attracted growing attention as with the social development. In other words, life 
satisfaction is an imperative provider to the broad construct of subjective well-being both in physical and/
or social levels. Public awareness has been elevated about the beneficial potential of specific natural 
chemical species in the human diet, which should be further focused on the exploration of the precise 
mechanisms in order to counter the effect of ageing for the longevity. It has been shown that some 
composition of diet might be one of the major determining factors for longevity of lifespan [107]. In 
addition, the dietary regulation may contain important, cost-effective, and/or harmless factors to 
counteract the effect and/or adjust the autophagy/mitophagy. A certain diet could control the autophagy/
mitophagy [108], which may also extend the lifespan. For example, it has been reported that 
downregulation of PARP1 by the puerarin supplementation may be promising for improving the longevity 
of Drosophila melanogaster by activating autophagy [109]. In mammals, not only has autophagy been 
associated with the profits of lifespan-extending interventions, but the activation of autophagy may be 
essentially sufficient to prolong the lifespan in mice [110]. Furthermore, sodium butyrate is known to 
improve several age-related pathologies and prolongs survival time in mice model [111], which is one of 
SCFAs detected in several foods. Interestingly, butyrate could promote mitochondrial biogenesis [112]. The 
anti-senescence activity of genistein is associated with inducing autophagy, in which SIRT1/AMPK pathway 
might be involved in accelerating autophagy and/or mitigating senescence [113] (Figure 3). Furthermore, 
an association between longevity and trehalose, a glucose disaccharide, has been recognized [114]. 
Trehalose could enhance the removal of protein aggregates through the process of autophagy in 
mammalian cell culture [115]. Disaccharide trehalose might deliver structure-specific effects on cellular 
energy production with mitochondria [108] (Figure 3). Metformin, a biguanide drug for the treatment of 
type II diabetes, may have beneficial effects on the lifespan by stimulating autophagy [116] (Figure 3). 
Additionally, it has been known in a variety of organisms including from yeast to mammals that autophagy 
might be involved in the regulation of longevity. As a result of the removal of dysfunctional mitochondria, 
mitophagy could contribute to increased longevity [117]. It seems that prolonged longevity may require 
autophagy/mitophagy. Consequently, autophagy/mitophagy-stimulating situations provoked by nutritional 
and/or pharmacologic interventions might contribute to the longevity of lifespan. Remarkably, enhanced 
autophagy/mitophagy could also counteract ageing of specific organs [118].

As shown here, quality control of mitochondria has a crucial role in counteracting the process of ageing 
[119]. Therefore, many cellular components that impact autophagy/mitophagy might be linked to 
longevity-related molecules such as members of sirtuin family proteins [119]. SIRT1 is the most noticeable 
member of the sirtuin family, which is a group of class III histone deacetylases implicated in longevity 
[120]. Some deacetylation genes by SIRT1 in the situation of caloric restriction may impact the longevity of 
lifespan [121]. For example, nuclear SIRT1 works to deacetylate the transcriptional coactivator peroxisome 
proliferator-activated receptor γ coactivator 1α (PGC1α), thereby enabling the expression of genes required 
in energy-exhausted cells [122]. This modification of histone acetylation might play critical roles in 
epigenetic gene regulation, which might contribute to the alteration in intracellular metabolism for the 
longevity of lifespan [122]. Possible causes of ageing might be associated with mitochondria. ROS could lead 
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to damaged DNAs following the accumulation of dysfunctional mitochondria thus increasing autophagy/
mitophagy. Therefore, autophagy/mitophagy could be regulated by ROS signaling. As mentioned in the 
introduction section, NAD+ levels, PARP1 activation, mitochondrial dysfunction, neurodegenerative 
diseases, neuron senescence, and/or ageing may construct a vicious cycle, whose propagation may drive 
pathologies. Here, we have highlighted the relationship between PARP1 and autophagy/mitophagy for the 
deceleration of ageing, which may provide potential therapeutic targets for struggling with age-related 
diseases and/or promoting longevity.
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