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Abstract
Bioactive compounds are secondary metabolites widely studied for their benefits to human health. They are 
distributed in various fruit, vegetable, and plant peels. The application of sustainable techniques for the 
extraction of these compounds is being implemented, assisted extraction by solid-state fermentation is a 
sustainable and effective alternative for the recovery of bioactive compounds by using agro-industrial 
waste as a raw material for extraction, this being a green process, easy for implementation, and it has low 
water and energy consumption. This research presents the biological properties of some of the most used 
bioactive compounds in the industry, as well as the advantages and factors that influence solid-state 
fermentation and the different processes for their recovery and/or production. The production of bioactive 
compounds using both continuous and discontinuous processes come with unique advantages and 
challenges. The choices between these methods depend on specific production objectives, scalability needs, 
and the availability of resources. As a result, ongoing advancements are refining these methods, enabling 
more sustainable and efficient production of bioactive compounds.
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Introduction
Plants often possess biological compounds known to be secondary metabolites that the plant produces 
naturally. Recent studies have considered some primary metabolites as bioactive compounds. Bioactive 
compounds play an important role in human health and they can be easily found in some fruits, vegetables, 
legumes, cereals, and roots [1–3].

Bioactive compounds can be divided into essential compounds and non-essential compounds. Essential 
compounds play a biological function in the human body and often a deficiency of these can lead to disease, 
examples of these compounds are liposoluble vitamins. On the other hand, non-essential compounds are as 
their name suggests not essential to the human body but that doesn’t mean they are not important, 
phytochemicals are an example of this and they can offer several health benefits such as the prevention of 
disease, and another important function is the antioxidant power which can lead to other important 
functions [4].

Phytochemicals are one of the most important varieties of bioactive compounds and they come from 
plants. The consumption of phytochemicals could potentially protect the body from diseases. In recent 
years, phytochemicals have generated great interest in their various applications, one of them being the 
development and application of phytochemicals in nutraceuticals and food supplements. Phytochemicals 
can be found in almost all the foods from vegetable sources [5, 6]. These compounds have high antioxidant, 
antiviral, antimicrobial, anthelmintic, and antiallergenic activity [7].

According to the chemical structure presented, bioactive compounds can be classified as: polyphenols, 
alkaloids, phytosterols, terpenoids, and organosulfur compounds [4].  In addition, several other compounds 
can be considered bioactive such as amino acids, hormones, polysaccharides, and fatty acids [8]. Figure 1 
shows the main classifications of bioactive compounds as well as an example for each classification showing 
the general chemical structure.

Figure 1. Classification of bioactive compounds

Given the increase in agro-industrial waste in recent years as food production keeps increasing to 
satisfy the global population, several studies have focused on obtaining high-value bioactive compounds 
from these wastes. Conventional techniques such as maceration, infusion, and distillation involve the use of 
ethanol, water, glycerol, acetone, hexane, and isopropanol. These solvents are considered highly toxic to the 
environment; emerging technologies such as microwave-assisted extraction, ultrasound-assisted 
extraction, and supercritical fluids, have been key to this purpose [9, 10]. It has been demonstrated that 
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bioprocesses such as solid-state fermentation (SSF), submerged fermentation (SF), and liquid fermentation 
(LF) can be useful in the recovery of bioactive compounds [11, 12].

Bioactive compounds are a great source of biological activities, Martins et al. [13] highlight the 
relevance of SSF as a bioprocess for the recovery of phenolic compounds, in this regard the technique has 
gained great attention in recent years due to its potential for the revalorization of agro-industrial wastes for 
its low-cost and availability. Although it is crucial to understand the factors that operate in the production 
and/or recovery of phenolic compounds by SSF, that is why this review article aims to demonstrate better 
ways to recover and produce bioactive compounds by continuous and discontinuous production by SSF and 
their important biological activities.

Polyphenols with biological activity
Polyphenols are bioactive compounds found in a wide array of plants, and they offer important roles in 
health and therapeutics. Phenolic compounds present in plants may vary in quantity depending on the type 
of plant and organ being examined, due to genetics, maturity of the plant, and the climate where it grew 
[14]. These compounds can protect the plants from UV solar radiation and combat oxidative stress, 
potentially helping the plant to defend itself from pathogens and other factors [15].

Polyphenols can be found in many foods, including but not limited to, onions, broccoli, cauliflower, 
pomegranate, mango, raspberries, almonds, rice, oats, wine, tea, beer, and cider [16]. To obtain these 
compounds various conventional technologies are used combining the use of solvents such as ethanol, 
methanol, acetone, and hexane; the use of emergent technologies such as supercritical fluid extraction, 
microwave and ultrasound-assisted extraction, electric pulses, and bioprocesses such as SSF and SF are 
taking a great deal of importance in replacing the previously mentioned methods, as this methods can use 
water and ethanol as solvents and do not require the use of any harmful solvent [17, 18].

There are different types of polyphenols according to the composition of their functional groups, and 
these compounds range from simple and small molecules to large and complex compounds. Most 
polyphenols have benzene rings (C6H6) and various hydroxyl groups (–OH) allowing them to bind together 
with other molecules such as simple and complex sugars, amines, fats, carboxylic and organic acids, and 
some biomolecules that are soluble and insoluble in water [15, 19].

These compounds possess a molecular weight of around 500 to 3,000 Daltons. So far at least 8,000 
types of polyphenols have been reported in the literature, and they have been classified into different 
categories, some of them are phenolic acids, flavonoids, lignans, stilbenes, and tannins. Figure 2 shows the 
classification of polyphenols and some examples of them [20].

Polyphenols are in charge of protecting the plant, fruit, or leaf from microbial and viral infections, 
defending it against ultraviolet radiation, and can also accomplish the task of attracting pollinators such as 
bees, bumblebees, and hummingbirds. These functions that are given to the plant can be translated as 
benefits for human health when they are consumed [21].

As they are of plant origin, they are found in dietary sources they are an important part of a balanced 
diet assuming a person consuming them has good eating behaviors. Regular consumption of these bioactive 
compounds has been demonstrated to protect against some diseases such as cardiovascular disease (CVD), 
diabetes, cancer, and even neurodegenerative diseases like Alzheimer’s and Parkinson’s [22–24].

There is a wide array of compounds in all families of bioactive compounds and many biological 
activities are linked to them.

Flavonoids

Flavonoids, as well as other polyphenolic compounds, are found commonly in plant-derived material, fruits, 
seeds, leaves, and even the bark of some trees, they can apport distinctive colors, and pleasant smells and 
alter the flavor of the foods that compose them. Common flavonoids like catechin, epicatechin-gallate, 
quercetin, and naringenin can be found in many easy-to-find foods such as chocolate, green tea, apples, 
cheery, grape, tomato, broccoli, red wine, orange, grapefruit, and lemons [25].
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Figure 2. Classification of polyphenol compounds

Epicagallotechin-gallate (EGCG) is the main flavonoid found in green tea and matcha and it is known to 
confer this beverage which is widely popular in many countries of Asia many properties such as 
antioxidant, antiproliferative, antidementia, anti-inflammatory, and cardioprotective [26–28]. Recently 
with the surge of COVID in the year 2020, the search for answers on how to prevent and treat the disease 
led to the importance of studying previous molecules that could possess antiviral activity, EGCG has proven 
to be a potential source to inhibit SARS-CoV-2 virus. A study by Henss et al. [29] determined that EGCG was 
able to inhibit the replication of certain viruses with treatments of various concentrations of EGCG, the 
analyzed virus were the following; SARS-CoV-2 had an infection rate diminished by 50% (IR50) with 
concentrations of 1.73 μg, MERS-CoV had an IR50 of 4.64 μg and lastly SARS-CoV had an IR50 of 0.83 μg.

Quercetin is a phenolic compound found in many natural sources, some of which are fruits and 
vegetables, some examples include grapes, onions, and apples, but this does not mean that quercetin is only 
found in food sources, it can also be found in medicinal plants previously used in folklore medicine some 
examples of medicinal plants are Ginkgo biloba and Hypericum perforatum [30]. This compound possesses 
various biological activities which grant consumers, antioxidants, antimicrobial, antitumoral, antidementia, 
anti-inflammatory, and cardiovascular protection [27, 31, 32].

Ellagitannins

Ellagitannins are dietary compounds found in many food products, such as teas, fruits, nuts, and even 
medicinal herbs. Ellagitannins can be found as geraniin and corilagin, and when digested or hydrolyzed can 
form ellagic acid [33, 34]. Ellagitannins possess a unique property that when completely digested by the gut 
microbiota can form urolithins. This is a complete indication that ellagitannins the compounds were fully 
taken advantage of and metabolized by the body [35]. Investigations on urolithins determined their 
multiple benefits to human health, one of which is the prevention of brain and neuronal damage, thus 
possibly preventing Alzheimer’s disease [36].
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Geraniin is an ellagitannin commonly found in some medicinal plants and fruits. Geraniin has been 
studied previously for its great antioxidant, anti-inflammatory, antihypertensive, antiproliferative, and 
anticarcinogenic properties [33, 37–39].  Geraniin has demonstrated the potential as a great regulator for 
the angiotensin-converting enzyme (ACE), which regulates Angiotensin I and II responsible for elevating 
blood pressure, this molecule takes great importance due to the side effects that could occur with the 
consumption of current ACE inhibitors, the study used various concentrations of geraniin ranging from 0.1, 
0.005, 0.001, 0.0005 and 0.0001 µM these concentrations was shown to positively inhibit the activity of ACE 
by 55%, 75%, and 75% showing an antihypertensive activity with potential of using it with patients [40].

Ellagic acid is the result of the hydrolysis of ellagitannins such as geraniin and corilagin, but this does 
not mean that it cannot be found in natural food sources, pomegranates, rambutan, and various kinds of 
nuts possess this biological compound [41]. Ellagic acid has a lot of bioactivities as an antioxidant, 
antimicrobial, antifungal, anti-inflammatory, neuroprotective, and cardiovascular protection factor, among 
others [42–46]. This molecule has been studied as an antidiabetic compound, studies in mice by Yang et al. 
[47] who administered an amount of ellagic acid equivalent to 0.1% of the weight of the mice to its diet with 
results showing that the compounds present in the diet of the mice helped lower the blood levels of glucose 
and also lowering triglyceride content. Ellagic acid also functions as a gene regulator, studies by Cisneros-
Zevallos et al. [48] using ellagic acid at a concentration of 50 µM every 24 h decreased lipid accumulation by 
lipogenesis regulation, GLUT 4 glucose transporter and adiponectin. This shows the potential of ellagic acid 
as a regulator in metabolic disease, one of the current pandemics in the world that has until this point not 
been treated as it should be.

Carotenoids

Carotenoids are natural pigments that give vegetable sources their characteristic warm tones (orange, red, 
and yellow) [49]. These pigments not only give color naturally to our food preparations but can also 
provide the consumer with various biological activities such as antioxidant, anticancer, anti-inflammatory, 
antimicrobial, antifungal, antiviral, antiproliferative, and cardioprotective which are of interest to the whole 
population [50–54]. Some natural food sources of carotenoids include microalgae, mango, orange, papaya, 
pumpkins, watermelon, tomatoes, peppers, eggs, liver, crustaceans, and seafood in general [55].

A great characteristic of carotenoids is that not only plants can produce them, but some fungi, yeasts, 
and bacteria can produce them as a by-product of their fermentation [56]. Carotenoids have a key role in 
human health as a precursor for vitamin A (retinol), which has a greater biological role than what it is 
known for popularly by allowing us to see better, but it can also help in the differentiation, proliferation, 
and apoptosis of human embryonic stem cells [57].

Alkaloids

Alkaloids are natural compounds characterized for having a nitrogen molecule in any position of the 
structure. They are commonly found in plants, but can also be found in animals, insects, and some 
microorganisms [58]. The biological activity that alkaloids possess can be very important for the treatment 
of diabetes, cancer, and Alzheimer’s disease [59–61]. Regarding the anticancer effect of alkaloids, 
vinblastine, vincristine, vindesine, and vinorelbine have anticancer effects against breast carcinogenic cells 
like MCF-7 and MDA-MB-231, hepatic cancer cells HepG2, HepG2/ADM and leukemia cells of K562 [62].

Solid state fermentation
SSF is a process in which microorganisms can grow on a substrate with a low amount of free water content. 
This process has been used ever since ancient times to produce food, antibiotics, enzymes, and 
biopesticides [63, 64]. SSF has several advantages such as low sterility requirements, lower water demand, 
and high-volume production and it can be used to grow aerobic and anaerobic microorganisms [65]. 
Aspergillus  oryzae, Trichoderma  harzianum, Penicill ium  purpurogenum, Aspergillus  niger, and 
Saccharomyces cerevisiae are some microorganisms that produce bioactive compounds [66].
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Two types of SSF have been defined, one where the microorganism grows on an organic material, an 
example of this being agro-industrial waste, which by extension contains a lot of nutrients not exploited by 
lack of consumption, and the second one where the microorganism develops on an inert material such as 
polyurethane foam (PUF), that when impregnated by liquid medium it can facilitate microbial growth [67, 
68].

Although SSF faces a great challenge, industrial scalation involves the use of different mechanisms of 
action such as moisture, temperature, water activity, pH, microorganisms, heat, mass transfer, and oxygen 
availability. However, it is important to choose the appropriate conditions to recover and purify the product 
obtained [69, 70].

Factors of solid-state fermentation
Inoculum and microorganisms

Inoculum can be defined as a population of cells or spores supplemented to a fermentation medium to 
initiate said process, it must also be active and can adapt to the environmental conditions present in the 
culture medium [71]. SSF relies heavily on filamentous fungi, followed by yeasts and bacteria. Microbial 
growth hinges on two key nutrients: a carbon source for energy and structural properties, found in 
nutrients such as simple sugars or complex carbohydrates like starch, and a nitrogen source for protein 
synthesis [72].

Other factors that can alter the growth of microorganisms are the morphology and physiology of the 
microorganism, pH, chelating agents, presence of solids in the medium, viscosity, and temperature [73]. 
Nevertheless, using large amounts of inoculum can rapidly deplete available nutrients, affecting cell 
development and, consequently, product formation. Usually, values between 105 and 107 cells or spores per 
gram of fermentation medium are used [74].

Crafack et al. [75] mentioned that the physiological state of the inoculum directly impacts secondary 
metabolite production. A less-than-ideal state can significantly reduce output.

Temperature

Temperature is an important factor in SSF, as enzymes and other metabolites are sensitive to temperature 
[76]. High temperatures can damage enzymes and disrupt the production of desired compounds. Most 
importantly each microorganism has an optimal temperature range for growth [77]. The temperature has a 
great effect on the development of microorganisms as heat can effectively inhibit the growth when applied 
without a care in SSF, as it can cause the sudden death of the microorganism being used, also the sudden 
change of temperature [78] can the death of the microorganism used in SSF [79]. Cerda-Cejudo et al. [80] 
evaluated different factors, including temperature, using a central composite design for the production of 
ellagic acid by SSF with Aspergillus niger GH1 and demonstrated that this compound was obtained at 
temperature of 28.2°C.

Substrate

Agro-industrial wastes such as coffee pulp and husk, sugarcane and agave bagasse, fruit pulp and husks, 
and corn cobs, can be used as support or substrates to produce high-added value compounds [81]. These 
residues are abundant and are discarded as they have no specific use [82]. However, they can be used to 
extract polyphenolic compounds that possess commercial applications. Two types of solid matrixes are 
used in SSF: a nutritive matrix that provides nutrients to microorganisms such as starch, lignocellulose, and 
chitin, and a non-nutritive matrix which are matrixes that do not provide nutrients to microorganisms but 
can be used to infuse nutrients such as PUF and polystyrene [67, 78].

pH

The pH is a critical physicochemical parameter that influences SSF. pH is a determinant in the evaluation of 
microbial growth as it has a great influence due to the natural characteristics they need to reproduce. Each 
microorganism has a minimum pH rate, optimal, and maximum. Bacteria prefer a neutral pH, while fungi 
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and yeasts prefer a slightly more acidic pH [72]. The natural metabolism of the microorganism may alter 
the conditions of the pH as it could decrease when the microorganism produces organic acids and increase 
with the alkalinization of urea [83].

Moreover, pH fermentation medium impacts directly on the metabolism of microorganisms, 
influencing biochemical reactions of catabolism and anabolism cells [74]. However, pH monitoring and 
control in SSF presents difficulties due to the absence of appropriate equipment and electrons to measure 
pH in solid materials and the existence of pH gradients due to the heterogeneous characteristics of SSF [84]. 
Polania Rivera et al. [85] observed an increase in polyphenols due to optimal conditions used in SSF 
process, including pH of 5.5 using Rhizopus oryzae.

Moisture and water activity

Water is an important parameter that influences the SSF process. The amount of water in a material is 
referred to as water content. Furthermore, water is essential for microbial growth and performs vital 
biological functions. It acts as a solvent, providing soluble nutrients and helping to remove metabolic waste. 
Additionally, it has a structural role, crucial for the stability and operation of biological structures at the 
molecular and cellular levels [84].

However, high levels of moisture will hinder the transfer of oxygen to the particles, reduce the surface 
area of the fermentation medium, and increase the risk of contamination. Instead, insufficient moisture will 
alter the metabolism of microorganisms, decreasing the transfer of nutrients and metabolites [74].

Fungi require a moist environment to grow, such as Aspergillus niger GH1, HT3, or PSH [86]. 
Inadequate water content can hinder the uptake of nutrients by microorganisms, which can affect their 
growth. An optimum moisture content for microorganism growth and substrate utilization is between 40 
and 70% [69, 72]. De La Rosa-Esteban et al. [87] demonstrated the accumulation of ellagic acid via SSF with 
S. cereviasiae using a 60% moisture, 30°C and 1.5 × 107 cells/g.

Process to produce bioactive compounds through fermentation
Continuous process

A continuous process is when materials or energy move uninterruptedly through a system. These processes 
are widely used in industries, and an example of this is in food production, in addition to offering several 
advantages such as efficiency, high productivity, and control. However, the continuous process presents 
some challenges such as higher complexity and costs [88].

SSF is adapting to continuous processes, which makes SSF more cost-effective, as continuous processes 
are more efficient and require fewer resources [89]. SSF has several challenges, one of them is the scale at 
the industrial level, and within this is the choice of the bioreactor which is the environment in which 
microorganisms grow and are activated [90].

The bioreactor is fundamental in the development of bioprocesses, with various types used in 
fermentation technologies for the production of secondary metabolites, such as bioactive compounds [91]. 
Most SSF bioreactors operate in batch mode, however, some effects have been to design SSF systems 
capable of continuous operation. One of the bioreactors that have been adapted to a continuous system is a 
packed bed reactor (PBR) or column-type bioreactor [74]. This type of bioreactor consists of columns 
where the solid substrate is supported on a perforated base, allowing air to be forced through the substrate 
[92].

PBR has several multiple advantages, such as simple handling, larger bed volume, and easy scale-up, in 
addition, they can support microbial growth for long periods of culture under low shear conditions due to 
the immobilization of cells within microporous matrices [90, 93].

Now, few studies report continuous bioactive compound production, however, Buenrostro-Figueroa et 
al. [94] reported that ellagic acid could be continuously produced from pomegranate peel ellagitannins 
employing a PBR with Aspergillus niger GH1 under ideal conditions. In contrast, Taavoni et al. [95] reported 



Explor Foods Foodomics. 2025;3:101085 | https://doi.org/10.37349/eff.2025.101085 Page 8

the continuous production of B-carotene using Rhodotorula rubra cells in an airlift bioreactor, employing 
fatty acids from soap waste as a carbon source.

Discontinuous process

The discontinuous process often uses a batch process, which is carried out as its name implies, in batches 
and is a technology suitable for SSF, so it can be carried out in trays, containers, etc. [96]. In this type of 
process, the microorganism that is used must be inoculated in a fermented substrate with a fixed volume, 
therefore, the culture medium needs to be sterilized and changed with each fermentation. Once the 
fermentation time is done, the result will be the biological compounds of interest that can be accumulated 
and recovered [97]. A batch process is easy to implement as it requires low costs, the sterilization process is 
not as complicated, can be easy to handle, has greater flexibility, and has a very low risk of contamination. 
The main disadvantages are that it has lower productivity compared to the continuous process, the process 
control is lower, and a higher waste generation is presented [97, 98] (Table 1).

Table 1. Characteristics of continuous vs discontinuous processes [99, 100]

Characteristics Continuous process Discontinuous process

Process operation 
efficiency

Can maintain constant production. The batch system has challenges due to 
conditions over time and process control.

Yield and productivity Offers greater productivity. Reduce productivity due to SSF factors, 
which may result in lower yields and 
undesirable products.

Microbial growth and 
sporulation

The continuous system can be designed to optimize the 
fermented material to obtain an adequate growth of 
microorganisms.

Environmental conditions may affect 
microbial growth; thus, a lower biomass rate 
may result.

Substrate Substrate addition is done continuously during the 
process.

At the beginning of the process, the 
substrate is added and no more is needed.

Some studies that evaluate the recovery of bioactive compounds using SSF through a batch process can 
be traced back to the study of Polania Rivera et al. [85] whose research group evaluated SSF applying a 
batch process using aluminum trays and the resulting compounds identified the polyphenols such as gallic 
acid, caffeic acid, and cinnamic acid. Coronado-Contreras et al. [86] determined the content of hydrolyzable 
and condensed tannins (3.5 mg/g and 32.9 mg/g respectively) from prickly pear peel using SSF and using 
Aspergillus niger GH1 and HT3 as microorganisms, as well as demonstrating high antioxidant activity.

Conclusions
SSF offers a promising approach for recovering bioactive compounds from agro-industrial waste. While 
traditional batch processes are simple and cost-effective, they often show inconsistent recovery of bioactive 
compounds. To address this limitation, researchers are exploring continuous SSF methods for higher 
efficiency and profitability. This shift towards continuous processing needs the development of suitable 
bioreactors. Packed bed bioreactors, recognized for their scalability and straightforward scale-up process, 
have demonstrated potential in the continuous production of ellagic acid. In the last decade, the need to 
generate bioprocesses that allow continuous or discontinuous production of bioactive compounds has been 
identified, since the extraction processes have been extensively studied, further research on continuous. 
SSF is crucial to unlock the potential of this method for broader polyphenol production across the food, 
pharmaceutical, and cosmetic industries, leveraging the diverse health benefits these compounds offer.
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